3.114 \(\int \frac {1}{\sqrt {a+b x^2} \sqrt {c+d x^2} \sqrt {e+f x^2}} \, dx\)

Optimal. Leaf size=148 \[ \frac {\sqrt {e} \sqrt {c+d x^2} \sqrt {\frac {a \left (e+f x^2\right )}{e \left (a+b x^2\right )}} F\left (\sin ^{-1}\left (\frac {\sqrt {b e-a f} x}{\sqrt {e} \sqrt {b x^2+a}}\right )|\frac {(b c-a d) e}{c (b e-a f)}\right )}{c \sqrt {e+f x^2} \sqrt {b e-a f} \sqrt {\frac {a \left (c+d x^2\right )}{c \left (a+b x^2\right )}}} \]

[Out]

EllipticF(x*(-a*f+b*e)^(1/2)/e^(1/2)/(b*x^2+a)^(1/2),((-a*d+b*c)*e/c/(-a*f+b*e))^(1/2))*e^(1/2)*(d*x^2+c)^(1/2
)*(a*(f*x^2+e)/e/(b*x^2+a))^(1/2)/c/(-a*f+b*e)^(1/2)/(a*(d*x^2+c)/c/(b*x^2+a))^(1/2)/(f*x^2+e)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.08, antiderivative size = 148, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 34, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.059, Rules used = {552, 419} \[ \frac {\sqrt {e} \sqrt {c+d x^2} \sqrt {\frac {a \left (e+f x^2\right )}{e \left (a+b x^2\right )}} F\left (\sin ^{-1}\left (\frac {\sqrt {b e-a f} x}{\sqrt {e} \sqrt {b x^2+a}}\right )|\frac {(b c-a d) e}{c (b e-a f)}\right )}{c \sqrt {e+f x^2} \sqrt {b e-a f} \sqrt {\frac {a \left (c+d x^2\right )}{c \left (a+b x^2\right )}}} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]*Sqrt[e + f*x^2]),x]

[Out]

(Sqrt[e]*Sqrt[c + d*x^2]*Sqrt[(a*(e + f*x^2))/(e*(a + b*x^2))]*EllipticF[ArcSin[(Sqrt[b*e - a*f]*x)/(Sqrt[e]*S
qrt[a + b*x^2])], ((b*c - a*d)*e)/(c*(b*e - a*f))])/(c*Sqrt[b*e - a*f]*Sqrt[(a*(c + d*x^2))/(c*(a + b*x^2))]*S
qrt[e + f*x^2])

Rule 419

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1*EllipticF[ArcSin[Rt[-(d/c),
2]*x], (b*c)/(a*d)])/(Sqrt[a]*Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &
& GtQ[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-(b/a), -(d/c)])

Rule 552

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Dist[(Sqrt
[c + d*x^2]*Sqrt[(a*(e + f*x^2))/(e*(a + b*x^2))])/(c*Sqrt[e + f*x^2]*Sqrt[(a*(c + d*x^2))/(c*(a + b*x^2))]),
Subst[Int[1/(Sqrt[1 - ((b*c - a*d)*x^2)/c]*Sqrt[1 - ((b*e - a*f)*x^2)/e]), x], x, x/Sqrt[a + b*x^2]], x] /; Fr
eeQ[{a, b, c, d, e, f}, x]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {a+b x^2} \sqrt {c+d x^2} \sqrt {e+f x^2}} \, dx &=\frac {\left (\sqrt {c+d x^2} \sqrt {\frac {a \left (e+f x^2\right )}{e \left (a+b x^2\right )}}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {1-\frac {(b c-a d) x^2}{c}} \sqrt {1-\frac {(b e-a f) x^2}{e}}} \, dx,x,\frac {x}{\sqrt {a+b x^2}}\right )}{c \sqrt {\frac {a \left (c+d x^2\right )}{c \left (a+b x^2\right )}} \sqrt {e+f x^2}}\\ &=\frac {\sqrt {e} \sqrt {c+d x^2} \sqrt {\frac {a \left (e+f x^2\right )}{e \left (a+b x^2\right )}} F\left (\sin ^{-1}\left (\frac {\sqrt {b e-a f} x}{\sqrt {e} \sqrt {a+b x^2}}\right )|\frac {(b c-a d) e}{c (b e-a f)}\right )}{c \sqrt {b e-a f} \sqrt {\frac {a \left (c+d x^2\right )}{c \left (a+b x^2\right )}} \sqrt {e+f x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.12, size = 148, normalized size = 1.00 \[ \frac {\sqrt {e} \sqrt {c+d x^2} \sqrt {\frac {a \left (e+f x^2\right )}{e \left (a+b x^2\right )}} F\left (\sin ^{-1}\left (\frac {\sqrt {b e-a f} x}{\sqrt {e} \sqrt {b x^2+a}}\right )|\frac {(b c-a d) e}{c (b e-a f)}\right )}{c \sqrt {e+f x^2} \sqrt {b e-a f} \sqrt {\frac {a \left (c+d x^2\right )}{c \left (a+b x^2\right )}}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]*Sqrt[e + f*x^2]),x]

[Out]

(Sqrt[e]*Sqrt[c + d*x^2]*Sqrt[(a*(e + f*x^2))/(e*(a + b*x^2))]*EllipticF[ArcSin[(Sqrt[b*e - a*f]*x)/(Sqrt[e]*S
qrt[a + b*x^2])], ((b*c - a*d)*e)/(c*(b*e - a*f))])/(c*Sqrt[b*e - a*f]*Sqrt[(a*(c + d*x^2))/(c*(a + b*x^2))]*S
qrt[e + f*x^2])

________________________________________________________________________________________

fricas [F]  time = 1.80, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {b x^{2} + a} \sqrt {d x^{2} + c} \sqrt {f x^{2} + e}}{b d f x^{6} + {\left (b d e + {\left (b c + a d\right )} f\right )} x^{4} + a c e + {\left (a c f + {\left (b c + a d\right )} e\right )} x^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^2+a)^(1/2)/(d*x^2+c)^(1/2)/(f*x^2+e)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*x^2 + a)*sqrt(d*x^2 + c)*sqrt(f*x^2 + e)/(b*d*f*x^6 + (b*d*e + (b*c + a*d)*f)*x^4 + a*c*e + (a
*c*f + (b*c + a*d)*e)*x^2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {b x^{2} + a} \sqrt {d x^{2} + c} \sqrt {f x^{2} + e}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^2+a)^(1/2)/(d*x^2+c)^(1/2)/(f*x^2+e)^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(b*x^2 + a)*sqrt(d*x^2 + c)*sqrt(f*x^2 + e)), x)

________________________________________________________________________________________

maple [F]  time = 0.08, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {b \,x^{2}+a}\, \sqrt {d \,x^{2}+c}\, \sqrt {f \,x^{2}+e}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(b*x^2+a)^(1/2)/(d*x^2+c)^(1/2)/(f*x^2+e)^(1/2),x)

[Out]

int(1/(b*x^2+a)^(1/2)/(d*x^2+c)^(1/2)/(f*x^2+e)^(1/2),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {b x^{2} + a} \sqrt {d x^{2} + c} \sqrt {f x^{2} + e}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^2+a)^(1/2)/(d*x^2+c)^(1/2)/(f*x^2+e)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(b*x^2 + a)*sqrt(d*x^2 + c)*sqrt(f*x^2 + e)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {1}{\sqrt {b\,x^2+a}\,\sqrt {d\,x^2+c}\,\sqrt {f\,x^2+e}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a + b*x^2)^(1/2)*(c + d*x^2)^(1/2)*(e + f*x^2)^(1/2)),x)

[Out]

int(1/((a + b*x^2)^(1/2)*(c + d*x^2)^(1/2)*(e + f*x^2)^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {a + b x^{2}} \sqrt {c + d x^{2}} \sqrt {e + f x^{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x**2+a)**(1/2)/(d*x**2+c)**(1/2)/(f*x**2+e)**(1/2),x)

[Out]

Integral(1/(sqrt(a + b*x**2)*sqrt(c + d*x**2)*sqrt(e + f*x**2)), x)

________________________________________________________________________________________